Halton VHD

Diffuseur à débit d'air variable

- Diffuseur de soufflage actif pour montage plafonnier
- Soufflage avec débit d'air variable et portée constante
- Maintien de l'effet Coanda à faibles débits d'air
- Large plage de fonctionnement de températures de soufflage
- Adapté aux réseaux de ventilation à pression constante
- Conçu pour utilisation conjointe avec le plénum TRI/V
- Débit d'air maximum réglable par l'organe de réglage MSM
- Débit d'air minimum du diffuseur Halton VHD : 35 à 55 m³/h pour les tailles 160 à 250

Accessoires

• Plénum d'équilibrage TRI/V avec câble de connexion

MATÉRIAU ET FINITION

PIÈCE	MATÉRIAU	FINITION
Panneau supérieur	Acier	Peinture époxy-polyester blanche (RAL 9003)
Façade	Tôle d'acier perforé	Peinture époxy-polyester blanche (RAL 9003)
Cône de réglage	Acier	Peinture époxy-polyester noire (RAL 9005)
Joint d'étanchéité	Caoutchouc	

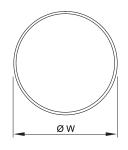
SÉLECTION RAPIDE

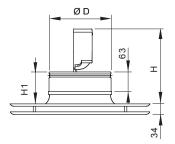
qv	Pa	540	660	840	1080	1320	1560	1800	2040	2280
	l/s	45	55	70	90	110	130	150	170	190
	m³/h	162	198	252	324	396	468	540	612	684
VHD-160 + TRI/V-160-160(N)	I/s	32	40							
	ΔPst	12	17	28	46					
	ΔPtot	15	22	36	58					
	Ld	-	-	-	-					
	Lmin	-	-	1,0	1,6					
	L0.2	1,7	2,2	2,9	3,5					
VHD-200 + TRI/V-200-200(N)	LpA			21	28	34	39			
	ΔPst			16	26	38	54			
	ΔPtot			19	31	46	64			
	Ld			-	-	4,6	5,2			
	Lmin			1,2	1,8	2,2	3,0			
	L0.2			3,1	4,3	5,1	6,0			
VHD-250 + TRI/V-250-250(N)	LpA				22	28	33	37	41	45
7115 250 1 1111/7 250 250(11)	ΔPst				15	22	30	40	52	65
	ΔPtot				17	25	35	47	59	74
	Ld				-	4,0	4,6	4,8	5,1	5,4
	Lmin				1,6	2,0	2,6	3,0	3,4	4,0
	L0.2				3,9	4,5	5,0	5,2	5,5	6,0

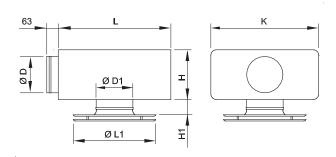
 Δ Ptot

Ld

LpA valeurs LpA présentées avec atténuation de la pièce de 4	ŀ
dB (red 10m² - sab). Atténuation de la pièce 8 dB (red 25m² -	
sab): LpA - 4dB.	


		Lmin
Pa	Puissance froide, W, ΔT=10°C	
LpA	Niveau de pression acoustique pondéré A réduit grâce à une surface d'absorption de 10m², dB(A) red 10m² - sab	L0.2
ΔPst	Pression statique, Pa	


Pression totale (Pa), pour le débit indiqué Longueur critique, distance entre le diffuseur et le point de séparation de la veine d'air et du plafond, m Distance minimum entre 2 unités de soufflage (axe à axe), m (V3 = 0,25 m/s à une hauteur de 1,8 m) Portée en isotherme (m) quand la vitesse résiduelle de la veine d'air est de 0,2 m/s. Valeurs de portées communiquées pour $\Delta T = 10\,^{\circ}\text{C}$


DIMENSIONS

Taille	øw	Н	H1	ØD
160	299	262	98	159
200	449	267	104	199
250	449	275	109	249

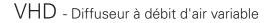
Dimensions avec plénum TRI/V

Taille	TRI/V	L	L1	Н	H1	K	ØD	ØD1	
160	125160	458	299	182	96126	432	124	162	
160	160160	458	299	222	96126	432	159	162	
200	200200	618	449	272	100130	592	199	202	
250	250250	618	449	336	111141	592	249	252	

ACCESSOIRES

Moteur

En standard, le diffuseur Halton VHD est équipé d'un moteur Siemens GDB161.2E/HA.


MOTEUR	FORCE	COMMANDE SIGNAL	TENSION DE FONCTIONNEMENT	CONSOMMATION DE COURANT
GDB161.2E/HA	125 Nm	010 VCC	24 VCA	3VA

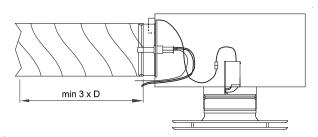
Plénum de soufflage TRI/V

L'utilisation du diffuseur Halton VHD est particulièrement avantageuse avec un plénum Halton TRI/V. Le plénum TRI/V comprend :

- Un module de mesure et de réglage MSM
- Un boîtier de raccordement électrique pour l'alimentation et le signal de commande
- Un câble pour une connexion aisée du diffuseur d'air variable Halton VHD.

FONCTION

Le diffuseur Halton VHD est un diffuseur plafonnier actif. L'air est soufflé dans le local à travers l'ouverture latérale. L'air est soufflé horizontalement dans le local.

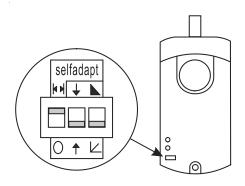

Le diffuseur Halton VHD maintient, du débit minimum jusqu'au débit maximum, une vitesse de sortie minimum assez élevée pour permettre une bonne diffusion et des conditions comfortables dans la zone d'occupation.

Dans des systèmes à volume d'air variable (VAV) ou de ventilation à la demande (DBV), les conditions de confort peuvent être garanties aussi bien au débit maximum qu'au débit minimum.

Un thermostat d'ambiance module le débit d'air en déclenchant le moteur du diffuseur Halton VHD au moyen d'un signal de commande standard de 0 à 10 VCC.

La fonction dépendante de la pression du VHD fonctionne en relation avec une installation à pression constante.

INSTALLATION

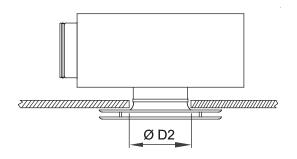


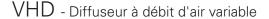
Le diffuseur actif doit être installé avec le plénum TRI/V. Le plénum TRI/V sera installé tout en respectant une distance de sécurité minimale de 3xD en amont, et ce afin d'assurer lun contrôle précis et une mesure fiable du débit d'air.

Le plénum TRI/V est équipé d'un câble de sécurité pour le diffuseur Halton VHD. Fixez le diffuseur Halton VHD au câble de sécurité.

Le diffuseur Halton VHD est raccordé électriquement au plénum Halton TRI/V par un connecteur.

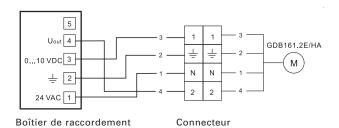
Verifiez que le paramétrage du moteur est conforme aux réglages usine. (Voir schéma ci-dessous).


Débrayer le moteur et mettre le cône de réglage sur la position d'ouverture maximale.

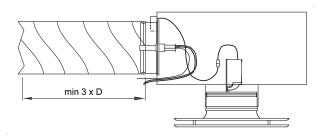

Fixer le diffuseur Halton VHB au boîtier du plénum Halton TRI/V.

Remarque : les performances techniques pour l'ensemble VHD+TRI/V sont données de façon séparée.

Dimensions de réservation


Taille	Ø
160	211
200	265
250	333

CÂBLAGE


Signaux de commande dans le boîtier de raccordement

Terminal 3

0 VCC = position minimale / débit d'air minimal10 VDC = position maximale / débit d'air maximal

Terminal 4 (informations provenant du moteur) Non connecté

MISE EN SERVICE

Vérifier que le cône de réglage de chaque diffuseur VHD est complètement ouvert (sur la position la plus basse). Cette vérification peut être effectuée mécaniquement ou électriquement :

- Si l'alimentation n'est pas raccordée au diffuseur actif, débrayer le moteur et mettre le cône de réglage sur la position d'ouverture maximale.
- Si une alimentation 24 VCA est raccordée au diffuseur, vérifier que le signal de commande reste en permanence sur la position 10 VCC.

Vérifier que la pression constante de l'installation correspond au niveau désiré (par exemple, entre 30 et 50 Pa).

Si la pression dans l'installation est trop faible et que le registre de réglage de pression est en position d'ouverture maximale, il est recommandé soit d'augmenter la pression du ventilateur, soit de régler l'unité de réglage MSM dans le plénum Halton TRI/V.

Le registre de réglage de pression doit avoir une pression différentielle suffisante par rapport au registre (de 30 Pa ou plus, par exemple).

RÉGLAGE

Le débit d'air du diffuseur actif est mesuré et réglé à l'aide du module MSM qui se trouve dans le plénum Halton TRI/V.

Relier le manomètre aux tubes de mesure sur le plénum TRI/V. Le débit d'air est calculé en prenant en compte la différence de pression observée et le facteur k :

$$q_v = k * \sqrt{\Delta p_m}$$

où :

Δp...: pression mesurée

k :facteur donné variant avec l'installation et le diamètre du piquage

q_v : débit d'air (l/s)

Si le débit d'air du diffuseur actif est trop élevé, régler la position de l'unité de réglage MSM dans le plénum TRI/V sur une position plus fermée. Dans un premier temps, si le débit d'air maximal n'est pas atteint, ouvrir le module MSM dans la position maximale. Si cela n'est pas suffisant, augmenter la pression dans l'installation.

Le débit d'air minimal est pré-réglé en usine. Il est possible de l'augmenter en tournant la vis située au milieu du cône de réglage.

Facteur k (D = diamètre du conduit)

D	k
160	15,9
200	26,2
250	44,5

NIVEAU ACOUSTIQUE

		qv (1/-)	/ 3/I- \	ΔPst	ΔPtot	F (Hz	•	050	F00	1000	2000	4000	0000	LpA	NR	NC
		(I/s)	(m³/h)	(Pa)	(Pa)	63	125	250	500	1000	2000	4000	8000	[dB(A)]		
VHD-160 +	Min	15	54	42	42	41	31	28	28	25	5	3	3	25	21	19
TRI/V-160-		18	65	57	57	42	34	33	33	30	13	7	4	30	26	25
160(N)		21	76	79	79	42	37	37	38	36	20	14	6	35	32	30
		24	86	107	108	43	40	41	43	41	28	20	9	40	37	36
	Max	55	198	17	21	40	31	30	29	24	10	3	3	25	20	19
		65	234	24	30	42	36	34	33	30	18	4	3	30	26	24
		77	277	34	42	44	40	38	37	36	26	13	3	35	32	30
		90	324	46	58	47	45	42	41	41	33	23	4	40	37	36
VHD-200 +	Min	24	86	50	51	40	34	28	29	24	6	5	3	25	21	19
TRI/V-200-		29	104	74	75	42	38	33	34	29	15	11	3	30	26	24
200(N)		35	126	107	108	44	42	37	38	35	24	18	3	35	31	29
		42	151	153	154	46	46	42	43	40	33	24	3	40	36	35
	Max	81	292	21	25	38	35	29	29	24	10	3	3	25	21	19
		96	346	30	35	42	39	33	33	29	18	4	3	30	25	24
		114	410	42	50	45	44	36	38	35	26	13	3	35	31	30
		134	482	57	68	48	48	40	42	40	33	22	3	40	36	35
VHD-250 +	Min	34	122	51	51	40	36	31	29	21	14	4	3	25	20	19
TRI/V-250-		39	140	68	69	41	39	36	34	26	19	9	3	30	26	25
250(N)		45	162	90	91	43	43	40	39	31	24	15	3	35	31	30
		52	187	119	120	45	46	45	45	37	29	21	3	40	37	36
	Max	100	360	18	20	36	33	29	30	21	8	3	3	25	22	20
		119	428	26	29	40	38	33	35	28	17	4	3	30	27	25
		141	508	36	41	43	43	37	39	34	25	13	3	35	31	30
		166	598	49	56	46	47	40	44	40	33	21	3	40	36	35

LpA valeurs présentées avec une atténuation de la pièce de 4 dB (red 10m² - sab). Avec une atténuation de la pièce de 8 dB (red 25m² - sab): LpA - 4dB.

NR/NC critère de bruit

ENTRETIEN

Ouvrir le diffuseur et détacher la tôle perforée. Oter complètement le cône de réglage.

Desserrer les deux vis qui permettent de fixer le moteur à la structure du diffuseur Halton VHB et le laisser accroché au câble.

Retirer le module MSM par la sortie du plénum Halton TRI/V en le retirant de sa structure. Ne pas forcer sur les tubes de mesure ou la tige de commande.

Nettoyer les pièces avec un chiffon humide (ne pas les plonger dans l'eau).

Remonter toutes les pièces dans l'ordre inverse.

SPÉCIFICATIONS

Diffuseur Halton VHD avec façade circulaire.

Il est utilisé pour les installations de confort à débit d'air variable pour lesquelles la portée doit être maintenue constante. La vitesse effective de sortie est maintenue constante quel que soit le débit d'air de soufflage pour garantir les conditions de confort dans la zone d'occupation.

Le diffuseur est équipé d'une motorisation linéaire qui agit proportionnellement en fonction du débit de soufflage, même si celui-ci est très faible.

Le diffuseur est utilisé en unité terminale sur une installation fonctionnant à pression statique constante en gaine.

Le diffuseur actif est en tôle d'acier galvanisé revêtu d'une peinture époxy-polyester de couleur standard blanche (RAL 9003).

Plénum de raccordement Halton TRI/V avec organe de mesure et de réglage de débit MSM.

Raccordement circulaire équipé d'un joint d'étanchéité.

CODE COMMANDE

VHD-D

D = Diamètre de raccordement 160, 200, 250

Options

CO = Couleur

SW: Blanc sécurité (RAL 9003)

X : Couleur spéciale

Exemple de code

VHD-160, CO=SW

Accessoires

TRI/V: Plénum

