Private: Halton Vita Lab VLX – airflow management damper

Halton Vita Lab

VLX – airflow management damper

Halton VLX is a galvanised steel damper for Halton Vita Lab Room and Halton Vita Lab Zone solutions

with special requirements on noise reduction:

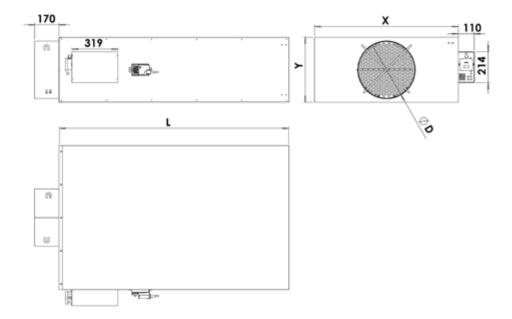
- Halton Vita Lab Room
 - · For supply and exhaust installations, for controlling room supply or exhaust airflow
- Halton Vita Lab Zone
 - For exhaust installations, to control the zone exhaust pressure

- The addition of a static pressure measuring unit (MSS) is recommended for measuring the static pressure
- Delivered with an integrated control box containing a differential pressure sensor for airflow measurement, a Halton VLC controller and a fast actuator

Product characteristics

- Airflow management plenum with acoustic attenuation (high density mineral wool)
- Pressure independent operation
- Complete shut-off function
- Maximum differential pressure over the damper of 1000 Pa
- Operating range: ambient temperature of 0 to 50 °C
- Ambient relative humidity <95%, non-condensing

Product models and options


- Short (VLX/S) and long (VLX/L) versions
- Separate supply and exhaust models
- Available sizes: 100, 125, 160, 200, 250, 315, 400 and 500
- Two options for insulation thickness (25mm and 40mm)
- Electrical or hot water reheating unit available
- Circular inlet, rectangular outlet (standard model)
- Outlet plenum with one or more circular connections available

The Halton Vita Lab Solo and Halton Vita Lab Room Design Guides available from Halton Sales provide you with more information about selecting the right configuration and damper for your Halton Vita Lab solution.

However, as all designs vary, close cooperation with Halton is recommended in order to ensure the best results.

Dimensions

Long version

	D	W2	Υ	W1
	100	400	250	1000
	125	400	250	1000
	160	400	250	1000
	200	600	280	1200
25 mm Insulation : I1	250	700	320	1400
	315	800	400	1600
	355	1000	450	1600
	400	1000	450	1600
	500	1300	550	1800
	100	430	280	1000
	125	430	280	1000
	160	430	280	1000
	200	630	310	1200
40 mm Insulation : I2	250	730	350	1400
	315	830	430	1600
	355	1030	480	1600
	400	1030	480	1600
	500	1330	580	1800

Short version

	D	W2	Υ	W1
	100	400	250	600
	125	400	250	600
	160	400	250	600
	200	600	280	600
25 mm Insulation : I1	250	700	320	900
	315	800	400	900
	355	1000	450	900
	400	1000	450	900
	500	1300	550	1000
	100	430	280	600
	125	430	280	600
	160	430	280	600
	200	630	310	600
40 mm Insulation : I2	250	730	350	900
	315	830	430	900
	355	1030	480	900
	400	1030	480	900
	500	1330	580	1000

Airflow range per size

Minimum and maximum airflow ranges for the different sizes for Halton VLX in I/s and m^3/h (max is based on damper velocity of 8 m/s):

NS	Qmin	Q for 8m/s
100	8 l/s	64 l/s
100	29 m ³ /h	230 m ³ /h
125	13 l/s	104 l/s
125	47 m ³ /h	374 m ³ /h
100	20 l/s	160 l/s
160	72 m ³ /h	576 m ³ /h
200	32 l/s	256 l/s
200	115 m ³ /h	922 m ³ /h
250	49 l/s	392 l/s
250	176 m ³ /h	1411 m ³ /h
215	78 l/s	624 l/s
315	281 m ³ /h	2246 m ³ /h
400	126 l/s	1008 l/s
400	454 m ³ /h	3629 m ³ /h
E00	197 l/s	1576 l/s
500	709 m ³ /h	5674 m ³ /h

Material

Part	Material
Casing	Galvanised steel
Damper blade	Galvanised steel
Perforated blade	Galvanised steel
Bearings	HDPE (Polyethylene Resin)
Blade gasket	EPDM Rubber
Measurement probe	Aluminium
Tube Connectors	Polyacetal
Flexible tubes	Silicone
Acoustic insulation	High density wool
Control Box	Galvanised steel (Control option : CB = CB1)

Function

Depending on the application, the damper maintains the required airflow in the fume cupboard, the room and/or the duct. A stable airflow is achieved through accurate measurement and airflow control, regardless of the variation in the conditions.

The damper is controlled by the Halton VLC controller (premounted on the unit in the control box). The VLC retrieves the measured sensor values of the Halton Vita Lab system and compares them with the assigned setpoint. The differential pressure sensor integrated in the damper measures the pressure with a measurement probe and calculates the airflow rate.

Based on the calculations, the VLC then adapts the damper position or frequency using a PID control in order to maintaina constant face velocity. If the airflow does not reach the predefined setpoint, an audio-visual alarm is triggered.

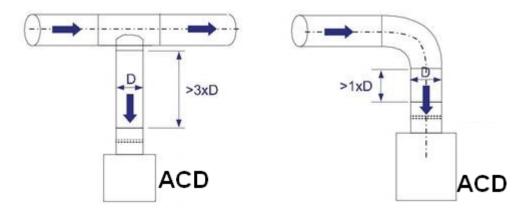
The damper is also equipped with an actuator, made of two blades with a kinematic link. When the main blade moves, the second, perforated blade moves in a different direction. This reduces airborne noise when the air enters the unit. The main blade is equipped with a gasket to reduce the friction and the needed torque of the actuator. The electric power consumption of the control loop is also reduced.

For more information about the operation of the damper as part of the Halton Vita Lab systems, see the Halton Vita Lab Solo Design Guide and the Halton Vita Lab Room Design Guide available from Halton Sales

Product Models

See table for codes of the different product models and options:

Code	Application	Description
VLX/S-S; IN=I1	Supply, no noise limits	Short version, 25mm insulation
VLX/L-S; IN=I1	Supply with noise limits	Long version, 25mm insulation
VLX/S-E; IN=I1	Exhaust, no noise limits	Short version, 25mm insulation
VLX/L-E; IN=I1	Exhaust with noise limits	Long version, 25mm insulation
VLX/S-S; IN=I2	Supply, no noise limits	Short version, 40mm insulation
VLX/L-S; IN=I2	Supply with noise limits	Long version, 40mm insulation
VLX/S-E; IN=I2	Exhaust, no noise limits	Short version, 40mm insulation
VLX/L-E; IN=I2	Exhaust with noise limits	Long version, 40mm insulation



Code	Accessory	Description
WBO	Reheat coil	Module integrating a water coil that can be connected to VLX
PBO	Connection module	Module connecting the outlet of the unit to circular ductwork

Installation

The damper must be installed horisontally and required safety distances must be taken into account when installing the damper.

Install the unit into the ductwork so the airflow direction through the unit is as indicated:

Static pressure measurement

When using the damper in Halton Vita Lab Zone applications, the addition of a static pressure measuring unit (Halton MSS) is recommended for increasing the accuracy of static pressure measurement.

In order to ensure the accuracy of the duct static pressure measurement, consider the safety distances between the measuring unit and airflow disturbances as follows:

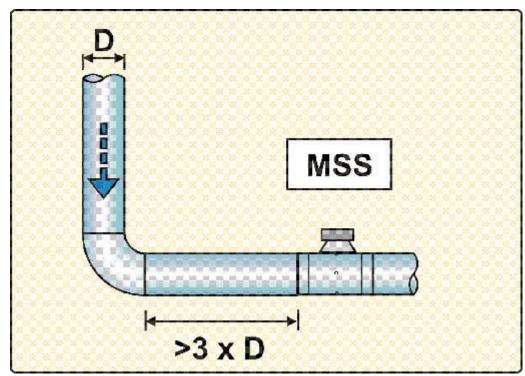


Fig.1. 90° elbow

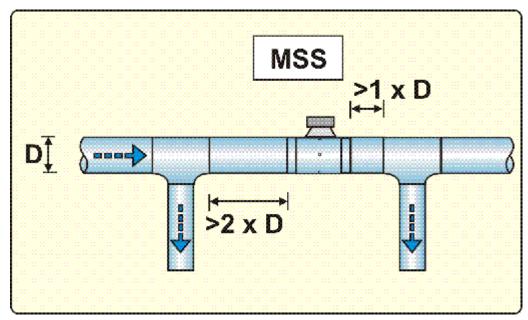


Fig.2. Branch on supply duct

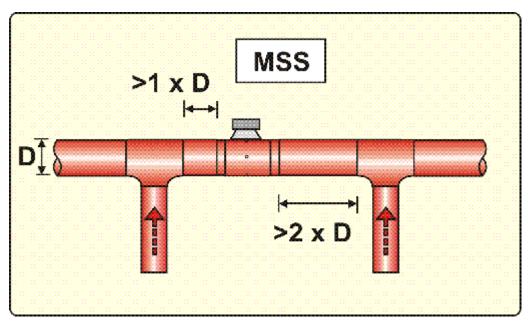


Fig.3. Branch on exhaust duct

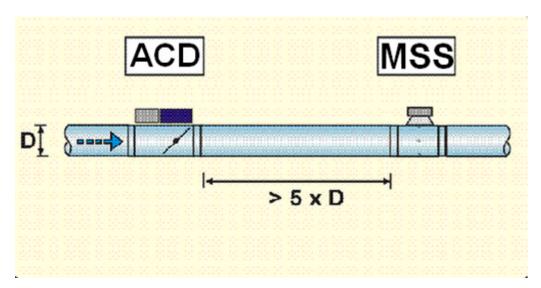


Fig.4. Safety distance between damper (ACD) and MSS, straight duct

Installation instructions and project-specific wiring diagrams are provided by Halton for all Halton Vita Lab system configurations. For more information, see the relevant Halton Vita Lab Solo and Halton Vita Lab Room Design Guides available from Halton Sales.

Commissioning

The actual airflow can be calculated as a function of the differential pressure at the measurement probe and the measurement probe k factor as follows:

$$q_v = k * \sqrt{\Delta p_m}$$

qv Actual airflow rate

k k-value for the product (see table below)

Δp_m Differential pressure of the measurement probe [Pa]

NS	k (l/s)	k (m ³ /h)
100	6,5	23,5
125	10,6	38,2
160	18,3	65,8
200	27,4	98,8
250	44	158,4
315	71,4	256,9
400	117	421,2
500	185,1	666,4

Specification

Specification

Damper for Halton Vita Lab Room and Vita Lab Zone applications.

Variable airflow control damper used for measuring and controlling the airflow of the laboratory space in supply or exhaust applications, or for controlling zonal pressure.

Damper made of galvanised steel with measurement probe pipes made of aluminium. Casing made of galvanised steel.

Pressure-independent damper equipped with

- a differential pressure sensor with auto-zero calibration and a digital display for airflow measurement
- an airflow controller
- LMS technology (Load Moment Stop) for extending product lifetime

Construction made with special attention to noise reduction.

- In the standard model, casing insulated with a 25 mm thick mineral wool. Mineral wool insulation has a high-density coating to avoid tearing, even at high velocities.
- An option forextra thick mineral wool insulation (40mm). This construction can replace the double skin construction.
- Damper actuator equipped with a kinematic link between blades for noise reduction. When
 the main blade moves, the second, perforated blade moves in a different direction. This
 reduces airborne noise when the air enters the unit. The main blade is equipped with a
 gasket to reduce the friction and the needed torque of the actuator. The electric power
 consumption of the control loop is also reduced.

- Acoustic part equipped with an asymmetrical silencer enabling additional acoustic attenuation, particularly in the low frequency-range.
- An option for a rectangular part, allowing air expansion

Compliance with standards: fire performance of the insulation Euro class A2, s1, d0

Suitable for laboratory environments: a smooth and washable surface to prevent microbial growth

Integration to fast systems possible due to:

- the differential pressure sensor's standard time constant of 0.5s
- the actuator's reaction time of 1.5s (damper sizes of up to 250mm)

The calibration parameters and the location of the damper are clearly labelled at the factory prior to delivery.

Product Code

Product code

VLX/V-M-D

V = Version

L Long

S Short

M = Model

S Supply

E Exhaust

D = Diameter (connection size)

100, 125, 160, 200, 250, 315, 355, 400, 500

Other options and accessories

IN = Insulation

11 25 mm

12 40mm

AS = Accessory

N No

Y Yes

ZT = Tailored product

N No

Code example

VLX/L-S-250, IN=I1, AS=Y, ZT=N

